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Transmission lines
•A transmission line is used for the transmission of electrical power from generating 
substation to the various distribution units. It transmits the wave of voltage and 
current from one end to another.

•Any transmission line can be simply represented by a pair of parallel wires into one 
end of which power is fed by an a.c. generator.

2
https://en.wikipedia.org/wiki/Transmission_line#/media/File:Transmission_line_symbols.svg

Transmission line

https://en.wikipedia.org/wiki/Transmission_line#/media/File:Transmission_line_symbols.svg


Wave equations for both voltage and 
current in a transmission line
•In the deriving the wave equation, a short element of the line is considered.

•Transmission line parameters are composed of resistance, inductance, conductance
and capacitance.

• The flowing currents gives rise to the combined inductance L0 H per unit length.

•Between the lines, which form a capacitor, there is an electrical capacitance C0 F per 
unit length.

•Resistance in the line is represented by R0  per unit length.

•Conductance due to an imperfect insulating property of the insulator between the two 
conductors can be designated as G0 S per unit length.
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Distributed element in a transmission line 

4https://behindthesciences.com/microwaves-propagation/distributed-element-model-in-transmission-lines-part-ii/

These parameters vary according to the type of line.

https://behindthesciences.com/microwaves-propagation/distributed-element-model-in-transmission-lines-part-ii/


Ideal or lossless transmission line
•In the absence of any resistance and conductance; i.e. R0 = G0 =0, only L0 and C0 completely 
describe the line, which is known as ideal or lossless.

5

• Representation of element of an ideal 

transmission line length dx.

• The inductance of the element is L0dx 

and capacitance of the element is C0dx.



Derivation of the voltage and current waves

VOLTAGE WAVE EQUATION

•If the rate of change of voltage per unit length at 
constant time is V/x.

•The voltage difference between the ends of the element 
dx is (V/x)dx, which is equals the voltage drop from 
the inductance -(L0dx)I/t

•Since 2/xt = 2/tx, a pure wave equation for the 
voltage with a velocity of propagation given by 

v2 = 1/L0C0 is

CURRENT WAVE EQUATION

•If the rate of change of current per unit length at constant 
time is I/x, there is a loss of current along the length 
dx of  -(I/x)dx.

•The loss is because some current has charged the 
capacitance C0dx of the line to a voltage V.

•If the amount of charge is q = (C0dx)V,

•So that 

•Since 2/xt = 2/tx, a pure wave equation for the 
current with a velocity of propagation given by 

v2 = 1/L0C0 is
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Coaxial cables

•Many transmission lines are made in the 
form of coaxial cables.

•The structure of the cables are composed 
of a cylinder of dielectric material 
having one conductor along its axis and 
the other surrounding its outer surface.

7https://www.slideshare.net/tafadzwagonera/presentation-on-different-modes-of-data-communication
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Inductance per unit length and conductance 
per unit length of coaxial cable

8https://slideplayer.com/slide/1631556/
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Characteristic impedance Z0
•The ratio of the voltage to the current in the waves travelling along the cable is 

•Z0 is defined as the characteristic impedance if the impedance is seen by the 
waves moving down an infinitely long cable.

• The impedance of the coaxial cable can be written as
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Characteristic impedance of a 
transmission line (1)

•Recall the wave equations of voltage and current waves

•The solutions for travelling wave propagating in the positive direction are givens as

•The voltage and current relates to each other via (V/x) = -(L0)I/t: the voltage drops across an 
element length dx.

•This gives
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Example data sheet of 
coaxial cable RG 59/U
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https://www.computercablestore.com/1000ft-rg-59u-coaxial-cable-75-ohm-shielded-riser-cmr
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Calculation :  Z0, C0 and wave speed
•The characteristic impedance Z0 of a coaxial cable

•Given numerical data : r = dielectric constant = 1.64, 0 = (36  109)-1 Fm-1  , 0 = (4  10-7) Hm-1 

2b = 4.521  mm  and 2a = 0.8128 mm

•Therefore, the characteristic impedance is found to be around   80 .

•The capacitance per unit length : 𝐶0 =
2𝜋𝜀𝑟𝜀0

ln
𝑏

𝑎

= 53.1 pFm-1

•Wave speed : v2 = 1/L0C0 = 1/ 0 r 𝜇0.  This gives v  2.34  108 m/s  or  80% of  light speed in vacuum. 
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•Subsequently, this gives

•The value of Z0 for the coaxial cable is found to be

•In common with the specific acoustic impedance, a negative sign is introduced to the ratio 
when the waves are travelling in the negative x-direction.

•When waves are travelling in both directions along the transmission line, the total voltage and 
current at any point will be given by
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Characteristic impedance of a 
transmission line (2)
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Reflection from the end of a transmission line

•Suppose that transmission line of  characteristic impedance Z0 has a finite length and that the end 
opposite that of the generator is terminated by a load of impedance ZL.

•Provided that the boundary condition at ZL must be V++V- = VL, where VL is the voltage across 
the load and I++I- =IL.

•In addition, V+/V- = Z0, V-/I- = -Z0 and VL/IL = ZL.
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Travelling wave to the right

Travelling wave to the left



Voltage amplitude 
coefficient

Reflection coefficient

Transmission coefficient

Current amplitude 
coefficient

Reflection coefficient

Transmission coefficient
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It is clear that if the line is terminated by a load ZL = Z0, its characteristic impedance, the line 

is matched, all the energy propagating down the line is absorbed and there is no reflected wave.



Derivation of the reflection coefficient

•Starting with V++V- = VL and I++I- =IL , derive    
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Short circuited transmission line (ZL = 0)

•If the ends of the transmission line are short circuited, we have

•This gives V+ = -V   and there is total reflection with a phase change of .

•This is the condition for the existence of standing waves.

•The figure shows that the voltage and current standing waves are out of phase in space by 900.

•In addition, both of them are also out of phase by 900 in time.
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Derivation of the voltage and current standing 
waves at any point along the transmission line.

•At any position x on the line, the two voltage waves may be written as

•With the total reflection and  phase shift, V0+ = -V0-, 

•The total voltage at x is 

•The total current at x is 

•Can you see the phase difference between voltage and current in space and time?
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Phase difference between current and 
voltage
•Recall total voltage and current at x : 

•Phase difference in space

•Phase difference in time
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Effect of resistance in a transmission line

•In practice, some resistance always exists in the wires which will be responsible for energy losses.

•The transmission line is supposed to have a series resistance R0  per unit length and a short circuiting or 
shunting resistance between the wire.

•The inverse shunt resistance is represented as a shunt conductance G0 (siemens per meter).

•Current will now leak across the transmission line because the dielectric is not perfect.
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Real transmission line element includes a series resistance R0  per unit length and 

a shunt conductance G0 S per unit length



Travelling waves in a transmission line 
with resistance (1)

•Recall the voltage and current changes across the line element length dx in case of lossless line,

•Now, adding the resistance R0 and conductance G0 to the equation,

•Inserting /x into one of the above equation gives
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•Similarly, the differential equation for the current may written as

•It is clear that the solutions for x-dependence of                             are of the form

•The complete solution with the time-dependence term exp(it) may be written as
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Travelling waves in a transmission line 
with resistance (2)

( ) ( )( )
2

2
0 0 0 0 0 02

I V
G i C R i L G i C I I

xx
   

 
= − + = + + =



2
2

2

V
V

x



=



 or   ;where   and    are constants.x xV Ae V Be A B − += =

( ) ( ) ( )i t kx i t kxx x i t x xV Ae Be e Ae e Be e
     − +− + −= + = +

Amplitude attenuation terms of  travelling waves 

caused by the resistance in the transmission line



•Voltage and current waves in both directions along a transmission line with resistance.

The effect of the dissipation term is shown by the exponentially decaying wave in each direction.

•Note that, the behavior of the current wave I is exactly similar.

•Since power is the product  VI, the power loss with distance varies as 
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Characteristic impedance of a 
transmission line with resistance
•Let’s consider one of the solution to the equation 2I/x2 = 2I,

•Recall                                       , this leads to

•Or  
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Wave equation with diffusion effects
•In case of having energy-loss mechanism in a wave propagation, the wave equation may be 
modified as

•Suppose the solution is given by  𝜙 = 𝜙𝑚𝑒
𝑖 𝜔𝑡−𝛾𝑥 .

•By finding  
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𝑖2𝛾2 = 𝑖2
𝜔2

𝑐2
+ 𝑖

𝜔

𝑑

Or 𝛾2 =
𝜔2

𝑐2
− 𝑖

𝜔

𝑑

28

𝜕2𝜙

𝜕𝑥2
=

1

𝑐2
𝜕2𝜙

𝜕𝑡2
+
1

𝑑

𝜕𝜙

𝜕𝑡
d = diffusivity with the dimension of length2/time



Wave equation with diffusion effects 
(contd.)
•If the propagation constant 𝛾 = 𝑘 − 𝑖𝛼 where   Τ𝜔2 𝑐2 = 𝑘2,

𝛾2 = 𝑘2 − 2𝑖𝑘𝛼 − 𝛼2 ≈ 𝑘2 − 2𝑖𝑘𝛼 if  𝛼 ≪ 𝑘

•The solution for  then becomes

𝜙 = 𝜙𝑚𝑒
𝑖 𝜔𝑡−𝛾𝑥 = 𝜙𝑚𝑒

−𝛼𝑥𝑒𝑖 𝜔𝑡−𝑘𝑥

•The solution shows that a sine or cosine oscillation of maximum amplitude 𝜙𝑚 decays 
exponentially with distance x.

•Diffusion mechanisms will cause attenuation or energy loss from the wave; the energy in a wave 
is proportional to the square of its amplitude and therefore decays as 𝑒−2𝛼𝑥.
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Homework #8
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